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FOREMOD 

T h i s  report is  the concluding technical document 
required under contract NAS8-20238 ( "Investigation of 
Problems of Optimum Satell ite Orbital Transfer and 
Rendezvous1I). 

The work described in this report was performed 
by the Space Sciences Department of the Space and Infor- 
mation Systems Division, North American Aviation, Inc., 
during a l4 month period cammencing on June 29, 1965 
and ending on A u g u s t  30, 1966. 
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ABSTRACT 

Quasilinearization w a s  employed t o  solve t w o  o rb i t a l  t ransfer  

problems. 

problem which resulted from a variational fornulation concerning optimal 

o rb i t a l  transfer.  

t ra jec tory ' s  end points could be assumed t o  be at unspecified positions 

upon arb i t ra ry  coplanar orbits.  

limited and capable of controlling thrus t  direction and duration ("bang- 

bang" t h r o t t l e  control). 

technique it was possible t o  determine t r a j ec to r i e s  that minimized the  

f u e l  required f o r  o r b i t a l  transfer maneuvers which were acccanplished 

a fixed time interval.  

which were derived from the corresponding optimal impulsive o r b i t a l  

t ransfers ,  were required f o r  convergence of the quasilinerarization pro- 

cess. 

above techniques then was uti l ized t o  generate optlmal t ransfers  between 

numerous pa i r s  of arbi t rary coplanar orbits. 

it w a s  possible t o  make a series of significant ccrmparisons concerning 

the  velocity changes reguired for  corresponding optlmal f in i te - thmst  

and optimal impulsive o r b i t a l  transfers.  

demonstrated t h e  existence of optimal  t ransfers  between llshallouly 

intersecting" o rb i t s  which required only one thrusting period. These 

maneuvers were shown t o  be analogous t o  the be t te r  known optimal one- 

impulse maneuver. 

The first involves a discontinuous two-point boundary value 

The boundary conditions were such t h a t  the t ransfer  

The vehicle was assumed t o  be t h r u s t  

Through careful use of the quasilinearization 

It was found t h a t  accurate initial conditions, 

A n  E M  7094 double-precision computer program incorporating the 

Using the  result ing data, 

Further numerical investigations 
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The second problem concerned finding impulsive transfers in the 

general three-body problem. 

the quasilinearization technique to solve the two-point boundary value 

problem that occurs. 

point (position and velocity at sane point along an initial orbit or  tra- 

jectory) and the arrival point (position and velocity at some point along 

a final orbit or  trajectory). 

fer time and the general nature of the expected transfer (e.g., forward 

around the earth to retrograde around the moon). 

the impulses required to complete the transfer. The required initial 

estimate of the trajectory was produced by a patched conic trajectory 

program, but it may also be supplied in as many as ten linear segments. 

A computer program was developed by employing 

The specified boundary conditions were the departure 

it was also necessary to specily the trans- 

The problem was to find 

SID 66-1224 
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Quasil inearizstion was employed t o  solve two o rb i t a l  t ransfer  problems. 
volves a discontinuous two-point boundary value problem which resulted fran a var ia t ional  
formulation concerning optimal orb i ta l  transfer.  
t h e  t ransfer  t ra jec tory ' s  end points could be assumed t o  be a t  unspecified positions upon 
arb i t ra ry  coplanar orbits.  
controll ing thrust direction and duration ( %ang-bangIl t h r o t t l e  control). Through careful  
use of the  quasilinearization technique it was possible t o  detexmine trajectori.ea t h a t  
minimized the  fue l  required for orbi ta l  t ransfer  maneuvers which were accomplished in a 
fixed time interval.  It was found that accurate i n i t i a l  conditions, which were derived 
from the corresponding optimal impulsive o rb i t a l  transfers,  were required for convergence 
of the quasil inearisation process. 
a t ing the  above techniques then was uti l ized t o  generate optimal t ransfers  between 
numerous pair6 of a rb i t ra ry  coplanar orbits. 
t o  make a series of significant comparisons concerning the  velocity changes required f o r  

The first in- 

The boundary conditions were such t h a t  

The vehicle was assumed t o  be thrust  limited and capable of 

An IBn 7094 double-precision computer program blcorpolc 

Using the  result ing data, it was possible 

corresponding optimal f ini te- thrust  and optimal impulsive o rb i t a l  transferst. -her 
numerical investigations demonstrated the existence of optimal transf ers between "shallowlg 
intersectingrt  o rb i t s  which required only one thrust ing period. There maneuvers were 
shown t o  be analogous t o  the be t te r  known optimal one-hpulse maneuver. 

3' 

The second problem concerned finding hpulsive t ransfers  i n  the general three-body problem. 
A computer program was developed employing the quasilinearization technique t o  solve 
t h e  two-point boundary value problem that occurs. 
t h e  departure point (position and velocity a t  some point along an init ial  orb i t  or tra- 
jectory) and the arrival point (position and velocity a t  scme point along a final orb i t  
or t ra jectory) .  
of the expected t ranafer  (8.g.) forward around the  earth t o  retrograde around the  moon). 
The problem was t o  f ind the hpulses required t o  complete the transfer.  
i n i t i a l  estimate of the  t ra jectory wa8 produced by a patched conic t ra jec tory  program, 
but it may also be supplied in (UJ many P8 t en  l i nea r  sements. 

The specified boundary conditions were 

It was also necessary t o  specify the t ransfer  time and the  general nature 

The required 



Lhriag the  past seven yea r s the  authors have participated in a 

se r i e s  of contractual studies of optimal o r b i t a l  t ransfer  and rendezvous. 

Under the  initial contract, NAS 8-4, work consisted of fonmrlation and 

parameter studies involving coplanar two-impulse t ransfer  (Refs. 1 t o  3). 

The second contracted e f for t  (NAS 8-1582) was devoted t o  developing 

numerical methods f o r  finding t h e  absolute minimurm two-inpulse t ransfers  

between arbi t rary non-coplanar non-coapsidal e l l i p t i c a l  orbits.  

work, which is documented in Refs. 4 t o  13, led t o  several ccpnputational 

methods f o r  solving such problems. 

(NAS 8-52I.l) produced several refinements t o  the previously succearsful 

numerical techniques (Refs. I 4  and 15). 

of a steep descent numerical optimization program (Refs. 16 and 17). Using 

t h i s  numerical program, it was possible t o  conduct a number of studies 

which have now been published (Refs. 17, 18, 19 and 20). 

also produced a variational fonmtlation of the f i n i t e  t h r u s t  optixuwn 

o r b i t a l  transfer problem (Ref. 21). 

solution using an ordinarg Newton-Raphson convergence technique which 

was l a t e r  found t o  be inadequate for this dreuuely scursitiw, p r o b h .  

The r e su l t s  of this t h i r d  contract are smmnarized i n  Mf. 22. 

T h i s  

The th i rd  contract i n  this ser ies  

It also led t o  the development 

This contract 

The fofiaalation was programed f o r  

Under t h e  current contract ( N U  8-20238) e f fo r t  uas concentrated 

upon solving the  f i n i t e  thrust  orb i ta l  transfer problem and upon an in- 

vestigation of impulsive transfer i n  the three-body problem. 

course of the staaJr both of there problems were sa t i s f ac to r i ly  solved 

D ~ h g  the  

-1- 



N O R T H  AMERICAN AVIATION. INC. SPACE and INFOFUMATION SYSTEMS DIVISION 

by e m p l o a  a mathematical technique known as quasilinearization (Refs. 

23, 24 and 25). 

This report presents the  resul ts  of t h e  f i n i t e  thrust  o rb i t a l t r ans -  

fer study as Appendix A. 

separate document (Ref. 26). 

cribing the  formulation and computer program ut i l ized  t o  produce two- 

impulse t ransfer  circumstances in the three-body problem. 

di t ions fo r  t h i s  problem were obtained from a patched conic t ra jectory 

program which w a s  a lso developed as part  of t h i s  contract effort .  

Appendix A w a s  previously distributed as a 

Appendix B contains a separate paper des- 

Initial con- 

During the past year it was also possible t o  update and revise 

several  of the computer programs f o r  performing numerical studies of 

two-impulse transfers in the two-body problem. 

now been documented and are available f o r  use (Refs. 16, 27, 28 and 29).  

These programs have 

-2- 
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RESULTS OF STUDY 

The numerical resu l t s  demonstrated tha t  quasilinearization i s  a 

powerful t o o l  fo r  the optimization of two-point boundary value problems. 

This w a s  true of both t h e  two-body f i n i t e  thrust  and the three-body 

impulsive transfer studies. 

impulsive results offered a good first approximation t o  t h e i r  f ini te  

thrust  counterparts. 

p r ior  impulsive o rb i t a l  t ransfer  s tudies  when generating f ini te  thrust  

t ra jec tor ies  about a single a t t rac t ing  center. 

t h a t  the impulsive three-body t ra jec tor ies  would be excellent first 

approximations when seeking the i r  f i n i t e  th rus t  counterparts. 

d e t a i l s  of t h i s  work appears as Appendices A and B. 

In the  two-body problem, it was found tha t  

For t h i s  reason, it w a s  possible t o  f u l l y  u t i l i z e  

This resul t  a lso implies 

Complete 

The success of these studies strongly suggests t h a t  t h i s  work should 

be expanded t o  include a three-dimensional formulation of the f i n i t e  

thrust o rb i t a l  t ransfer  problem. 

expanded t o  include a f i n i t e  thrust formulation in three dimensions. In  

both instances, the results and computer programs generated under the 

current study should prove invaluable. 

Also, the three-body work should be 

-3- 
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APF"DIX A* 

QUASILINEARIZATION DETERMINATION OF OPTIMUM 
FINTPE-THRUST ORBITAL TRANSFERS 

*Note that this appendix is a separate paper having its own nomenclature, 
illustrations, references, etc. 
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AETRACT 

1 -  

~ I 

I 1  

Quasilinearization was utilized to solve a discontinuous two-point 

boundary value problem which resulted from a variational formulationconcelning 

optimal orbital transfer. 

transfer trajectory‘s end points could be assumed to be at unspecified 

positions upon arbitrary coplanar orbits. 

thrust limited and capable of controlling thrust direction and duration 

( llbang-bangll throttle control). 

tion technique it was possible to determine trajectories that minimized 

the fuel required for orbital transfer maneuvers which were accomplished in 

a fixed time interval. 

were derived from the corresponding optimal impulsive orbital transfers, 

were required for convergence of the quasilinearization process. An IEN 

7094 double-precision computer program incorporating the above techniques 

then was utilized to generate optimal transfers between numerous pairs of 

arbitrary coplanar orbits. Using the resulting data, it was possible to 

make a series of significant comparisons concerning the velocity changes 

required for corresponding optimal finite-thrust and optimal impulsive 

orbital transfers. 

existence of optimal transf ers between ttshallowly intersecting” orbit8 

which required only one thrusting period. 

be WlOgOU8 to the better known optimal one-impulse maneuver. 

The boundary conditions were such that the 

The vehicle was assumed to be 

Through careful use of the quasilineariza- 

It was found that accurate initial conditions, which 

. 

Further numerical investigations demonstrated the 

These maneuvers were shown to 



I. INTRODUCTION 

Certain r e a l i s t i c  treatments of the optimum orb i ta l  t ransfer  problem 

lead t o  a variational formulation whereh the  d i f fe ren t ia l  equations have 

no exact closed form solution. 

point boundary value problem considered here(')indicated t h a t  it w a s  

extremely sensit ive and could not be solved by an ordinary Newton-Raphson 

method. 

allowed the successful computation of optimal "finite-thrust ' '  transfer 

t r a j ec to r i e s  between arbi t rary pairs of coplanar e l l i p t i c a l  orbits.  How- 

ever, successful application of quasilinearization w a s  found t o  depend 

upon t he  proper use of in i t ia l  conditions derived fran an optimum two- 

Prior experience with the par t icular  two 

Reformulation and application of 'tquasilinearization"(2s3s4) 

impulse transfer maneuver. (5,6,7,8) 



11. THE OPTIMIZATION PROBLEM 

The problem t o  be considered here involves transferring between a 

pa i r  of coplanar orb i t s  defined by t h e i r  semi-latera recta  (p1,p2), 

eccentr ic i t ies  (el,e2) and arguments of perigee (w~,w*) .  

is the determination of tha t  trajectol-g which resu l t s  i n  an orb i t a l  transfer 

What i s  required 

with minirmrm fue l  expenditure. 

three-dimensional derivation originated by Jurovics(l) and is similar t o  

t h a t  presented by Leitmann. ( 9 )  

The formulation is a modified version of a 

Solution of t h i s  optimization problem in- 

volves the minimization of a functional which is  a function of only the  

boundary values of the s t a t e  variables: i.e, position, velocity, mass and 

time . 
The function t o  be minimized is the  character is t ic  velocity: 

where, 

and, where the s t a t e  variables are: 

In  the  above expressions c = effective exhaust velocity; r = radius, 

= central  angle; m = mass, and the  subscripts 0 and T refer t o  i n i t i a l  

and final points of the  trajectory. 

The rocket and its environment are defined i n  accordance with t h e  

following assumptions : 

1. The rocket is a variable ~ S S  part ic le .  + 

16 SID 66-1224 



. 2. The thrust  magnitude (F) is a l inear  function of the mass flow 

rate (PI: 

3. The vehicle is capable of thrust direction and t h r o t t l e  control, 

and the  control i s  instantaneous. 

Further, the t ransfer  maneuver is between two o r b i t s  about a single  

planet with a spherically symmetrical central  gravitational f i e l d .  

4. 

KQUATIoaSS OF MOTION 

In polar coordinates (Figure l), the  two second order equations of 

motion are: 
I‘ = - F cos v i: - r$2 + 7 m 

where, 

I‘ = gravitational constant 

v = steering angle measured from loca l  ver t ica l  

Therre equations may be reduced t o  first order fonn, where the new variables 

p a n d  y are defined a8 follows: 

r nr 

17 



! 

! I 
i 
j 



EULER LAGRAhazE EQUATICMS 

The opthum path must sat isfy the above equations of motion. 

addition, f o r  most conventional rockets, the solution is subject t o  t h e  

In 

L 

following co&raints: 

c = constant 

& 5 p  5 

where f3&= 0, and B,, is  specified. 

In the problem considered here one u t i l i z e s  the following additional 

constraint t o  impose %ang-ban@f control of mass flow rate: 

P(P-P-1 = 0 

If G is t o  possess an extrmum subject t o  the constraints imposed by 

Equations 7 t o  12 and 14, one mwt require t h e  f i r s t  variation of the con- 

strained functional t o  vanish. 

equation8 for the  bgrange multipliers result: 

The following Euler-Lagrange d i f f e ren t i a l  

k3 = 0 

+ =  3 =  - A 1  r 

The differential equation for 

u s e m  form: 

also may be written in the  following 
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The l@switching function" (k), which appears i n  Equation 20, governs 

thrust  on-off control and is defined as follows: 

where, 

Equations f o r  the steering angle ( Y )  are  a s  follows: 

14f: 
D cos v = (25)  

where, 
D = Jxk2 + lb2r 2 

Clearly, the steering angle has no physical significance when the vehicle 

is on a coasting arc. 

Since the d i f fe ren t ia l  equations do not involve time expl ic i t ly ,  

one obtains a first integral  (Hamiltonian): 

XIG + + A,# + h6p + 19 = A 

where, 

A = constant 

These last expressions may be used t o  replace one of the mer-Iagrange 

d i f fe ren t ia l  equations and thereby reduce t h e  order of the system by one. 
. 

BOUNDARY CONDITIONS 

Note that t h e  system is described by 10 equation8 for the  variables: 

rs 8 s  P I  9 s  
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This system thus requires 10 boundary conditions. 

the physics of the problem are: 

The seven specified by 

P l , e l r q  s P2, e2d42,q-J 

The remaining boundary conditions can be derived fran the  transversality 

condition: 

One may then obtain t h e  following additional boundarg conditions: (1) 

m 

A soenowhat different form of Equation 27 may also be derived: (1) 

F m  this folm of the  equation, it 58 clear t h a t  the  Hamiltonian 

(A  i n  Quat ion 20) must be equal t o  Qk at the end points. 

A # 0 at t = 0, then Equation 24 implies t h a t  k(0) = k(T). 

M h e r ,  if 

Ha- obtained a System of 10 first-order ordinary di f fe ren t ia l  

equations which m u a t  yield the requirsd optimal trajectory over a 

8pcifI.d tima Interval, 0x10 next observes that the  problan is of mlxd 

.ad-ralw natura .nd 

known at the  Mthl point (or fbd point). However, it i 8  m a l l  known that 

the  Ai can be scaled by a po8ltlve constant. (9) n u s ,  by assigning an 

appropriate initial value t o  Al, t h e  number of unknown initial conditiona 

YII r0dua.d to four. 

the five Valwa of the at. varhbl.8 aro 
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CORNER CONDITIONS 

For th is  particular problem, the  corner conditions are such that the 

multipliers associated with each of the state variables and A, the  first 

integral, must have the  same value immediately preceeding and foUouing 

a corner. 

(Ai)- = (\)+ (33) 

A+ (34 )  A- = 
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111. QUASILINEARIZATION 

Having obtained a nonlinear two-point boundaleg value problem, the 

powerful method of quasilinearization(2) may be used t o  generate the re- 

quired numerical solutions. 

may be written as a set of ten first-order equations, each of which may 

be considered t o  be one component of the vector equation: 

The previously derived differential equations 

where, 

X =  - 

r 

I 

P 

Y 

m 

A1 

k 

' 6  

s 

P 

Y 

- P  

- A -  +%L 
I r 

0 
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Note tha t  i n  the above equations an expression f o r  t h e  switching 

function (k) has been derived f r o m  Equation 20 and substi tuted f o r  X7. 

This substi tution w a s  useful since it replaced an unknown function with 

one w i t h  properties par t ia l ly  defined by t h e  optimum two-impulse transfer 

maneuver. 

regarded as a parameter whose t ime history may be obtained without resort-  

ing t o  numerical integration. I n  order t o  achieve computational economies 

Since X3 is constant throughout a given t ra jectory it may be 

the cmputer program required that A 

i n  the  vectors of Equation 36. 

be assigned t o  t h e  last position 3 

The quasilinearization method may be regarded a s  an extension of 

t h e  Newton-Raphson method f o r  algebraic equations t o  ordinary differ-  

e n t i a l  equations. 

his tory of the  solution vector, X(")(t) i s  known. A Taylor se r ies  

expansion about t h i s  appraximation, truncated with l inear  terms, may 

then be made t o  obtain the derivative of t h e  (n + llst approximation, 

Suppose t h a t  t h e  lfnlthll approximation t o  the  time 

N 

i = 1, 2...N 

where N is  t h e  number of d i f fe ren t ia l  equations, This is  t h e  fundamental 

In t h i s  case the  Jacobian matrix equation of quasilinearization. (2,3 1 

of p a r t i a l  derivatives i s  rather  involved (Eq.38, Fig.2). 

lengthy p a r t i a l  derivatives appearing i n  the  Jacobian matrix appear 

as Equations 39. 

The more 
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, solutions may be added ( n+l) 
Because Equation 37 is linear i n  the x i  

t o  sa t i s fy  a l l  the boundary conditions. By requiring a par t icular  solution 

t o  sa t i s fy  the known i n i t i a l  boundary conditions, it is  necessary t o  gene- 
* 

rate a par t icular  solution (Pi)  plus as many homogeneous solutions (H 

as there  are unknown i n i t i a l  boundary conditions (4). The correct number 

of equations t o  solve for  the combination coefficients,  C i n  the remain- 

ing four boundary conditions a r e  thus obtained: 

) ij 

3' 

4 

j=1 

( t ) ,  is evaluated by sunrming the (n+l) The (n+l kt approximation , xi 
stored values of Pi and Hij: 

L 

j=1 

Lf the process converges it will do so quadratically. ( 2 y 3 )  However, 

in order f o r  the process t o  converge, one must have a suf f ic ien t ly  accu- 

rate first approximation, X(O)(t), t o  the time his tory of t h e  solution 

vector. 

- 
Convergence of t h e  process may be examined by evaluating the  

following relationships a t  t h e  end of each i te ra t ion :  

i =  1, 2....N 

The abrupt changes i n  mass flow rate require special  consideration. 

Whenever the  switching function exhibits a zero (llswitch pointll) the  mass 

flow rate (& = - p )  must undergo a discontinuous change. This property 
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can be expressed by employing a unit s tep  function i n  the  def ini t ion of 

P :  (10) 

where, 

as follows: 

i = 1, 2 ... N 
The pi(&(")) term offers  no net contribution and may therefore be excluded 

from fur ther  consideration. Next, observe t h a t  a t  a switch point t h e  

Jacobian matrix w i l l  have some non-zero te rns  appearing i n  the column 

containing pa r t i a l  derivatives w i t h  respect t o  the switching function (k). 

Note t h a t  t h i s  i s  only t rue  at the switch points and t h a t  Equation 38 is 

val id  elsawhere. Thus, Equation 45 becomes: 

i = 1, 2....N 

Since the  switching time is determined by the n ' t h  i t e r a t ion  wherein 

k(") = 0 one obtains: 
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A t  t h i s  point it should be noted t h a t  only those te rns  i n  Equation 36 

which contain mass flow rate will contribute t o  the solution at  a dis- 

continuity. 

expressions of the  following form: 

Substitution of Equations 36, 43 and 44 in to  Equation 47 yields 

%+ A x i  (n+l) = its-;[ k(")(t) 1 d t ,  i = 1,2 ... N (49) 

where the S i  represent arbi t rary constants. 

In order t o  integrate with respect t o  the argument of the de l t a  

function one may adopt the following definitions: 

k = F( t )  , t = F-'(k) 

d t  = 2 F-' (k) dk 

Equation 49 may now be rewritten and integrated with respect t o  k; 

dk 

Equation 53 now may be applied t o  derive the following final 

expreeaions for the contributions t o  the solution at a corner point: 
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where, 

cos v 
C P  AP = A t -  
m 

cp sin v 
A y  = 

Am = - @ A t  

- "PhS 
AX1 - A t  - sin v 

2 m r  

(54) 

During the integration of the par t icular  and homogeneous solutions 

required by Equation 40, k("+l) will, i n  general, be non-zero at  the 

switch points detezmined from the  n ' t h  i terat ion.  The quantity,At,  

defined i n  Equation 58 may be regarded as an incremental change i n  the 

length of a burn period called f o r  since k (n+l) is now non-zero at  the 

switch points. 

compensate f o r  the changes which will result fran these small changes i n  

burning time, 

The incremental changes defined by Equations 54 t o  57 

The need for t h e  abeolute value sign can be established 

by considering the  physical implications of a non-zero value of k (n+U at 

points where k(") = 0. 
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IV.  NUMERICAL SOLUTION BY QUASILINEARIZATION 

COMFVTAT ION TECHNIQUES 

Equations 1 t o  58 were programmed i n  FORTRAN IV fo r  solution by 

an IBEl 7094 d i g i t a l  computer. A double precision integration program 

(Ref. 11) employing Runge-Cutta s tar t ing procedures and a variable 

step-size difference integration scheme w a s  uti l ized. The current 

approximation t o  t h e  solution, X(n) ,  as w e l l  as P and the H were 

generated by integration and stored a t  fixed tabular intervals.  During 
c -J’ - 

the  integration it was necessary t o  determine values of the variables 

between the tabular points. These intermediate values were obtained 

by Sterling interpolation(12) truncated with second differences. The 

f i f t y  equations for P and the H were integrated simultaneously, re- 

Wir ing  only one evaluation of gi and the  Jacobian matrix a t  each 

value of time ( t ) .  

time (T) t h e  combination coefficients, Cj, were evaluated from Equation 

(40),  and the stored values substituted in to  Equation (41) t o  obtain 

% 4 

After the integration was terminated a t  the f i n a l  

the new approximation: 5 (n+l) 

Computation w a s  saved by relaxing truncation e r ror  requirements 

where possible. 

i n i t i a l  conditions were used f o r  P. The contributions of the  H t o  

X(n+l) - 

A t  the  beginning of  each i t e r a t ion  the best available 

-3 - 
therefore diminished as t h e  process converged. Thus, the accuracies 

of t h e  H were not as important as t h a t  of P. -3 I 

Convergence of the  quasilinearization process was tes ted by can- 

(n+l) at  the  storage interval according and xi (n) paring the  values of xi 

t o  Equation 42. The en t i r e  process described above w a s  performed by 
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a general purpose quasilinearization subroutine which ut i l ized double- 

precision FORTRAN N .  (11) 

INITIAL CONDITIONS 

The extreme sensi t ivi ty  of the o rb i t a l  t ransfer  maneuvers con- 

sidered here was promptly discovered. For instance, small changes in 

tha diiratitns of t h e  thrust  periods were found t o  produce large 

variations i n  the trajectory, 

the  process t o  diverge. It was therefore necessary t o  obtain a real- 

i s t i c  approximation t o  the optimal t ra jectory pr ior  t o  the in i t i a t ion  

of the quasilinearization computations. 

Such small variations would often cause 

It w a s  found t h a t  the optimum two-impulse orb i ta l  transfer yielded 

an excellent in i t ia l  approximation t o  i t s  f i n i t e  thrust  counterpart. 

Accordingly, an i n i t i a l  conditions subroutine which ut i l ized a steep 

descent numerical optimization program (Refs. 8 and 13) was employed 

t o  generate an i n i t i a l  approximation t o  t h e  trajectory: X(O). - This  pro- 

cedure yielded excellent time histories f o r  the s t a t e  variables r, 

8, p ,  y and m. Utilizing Equation 1, and noting the impulses (velocity 

change) given by the two-impulse program, it was possible t o  accurately 

predict t he  duration of each "burn period". 

the  change i n  mass associated with the burn period,and tha t  one m u s t  

specify a set of rocket parameters; e.g. specific impulse, exhaust 

velocity, MSS flow rate,  etc.) 

d i t ions  it was  assumed that the  impulsive take-off and a r r iva l  points 

occurred at the  center of each burning period. 

(Note that one first obtains 

In order t o  generate the  i n i t i a l  con- 

To avoid having a thrust in i t ia t ion  or termination point occur at  

t = 0 or t = T, a coasting a rc  of several hundred seconds duration 
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? 

w a s  assumed t o  occur a t  t h e  beginning and end of the f i n a l  optimal 

trajectory. 

compute exact init ial  and f i n a l  values of the first four state variables. 

An i n i t i a l  approximation t o  t h e  t o t a l  time ( T )  required for the maneuver 

w a s  obtained by summing t h e  transfer times corresponding t o  the three 

impulsive coasting arcs. 

Under t h i s  assumption it w a s  a straightforward matter t o  

Although the ini t ia l  shape of the  switching function ( k )  w a s  un- 

known the impulsive solution gave an excellent approximation t o  the 

"switch points" (i.e., k = 0). 

t h a t  only these c r i t i c a l  values of t h e  switching function are required 

f o r  the generation of 5 (k+l). 

4 s .  53 t o  58 and by noting tha t  t h e  Jacobian matrix contains no p a r t i a l  

derivatives with respect t o  k except a t  a switching point. 

t ha t  4. 53 also requires an i n i t i a l  guess as t o  the value of 1; at  the 

suit ching points . 

I n  pr ior  arguments it w a s  established 

One may verify t h i s  by referring t o  

Note, however, 

Having detexmined the  time histories of the s t a t e  variables and the 

switching times, it i s  also necessary t o  supply i n i t i a l  approximations t o  

the time his tor ies  of the Lagrange multipliers. As previously noted, one 

Of the  h g r m g e  multipliers can be employed as a scale factor. Therefore, 

A1 was assigned an arbi t rary i n i t i a l  value. The following relationship 

may then be constructed from Equation 31 by assuming that t = 0 at  t h e  

impulsive switch point. (7) 

33 
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The impulsive solution may be employed t o  determine approximate 

values of r, p ,  y, b ,  $ and v a t  the center of the i n i t i a l  burning 

period. By pres- an initial value f o r  A one may then extract  the 3 
resul t ing in i t ia l  value f o r  h6. An i n i t i a l  value f o r  A then may be 4 
computed from the following expression which i s  a consequence of Equations 

24 and 25: 

- A6 
++ r t a n v  

- 

Thus, the  i n i t i a l  values of the Laeange multipliers can be estab- 

lished by u t i l i z ing  the impulsive solution and guessing the ratio. A,/%. 

Time his tor ies  of the Lagrange multipliers then were produced by an 

integration procedure which employed Equations 15 t o  18 and ut i l ized the  

previously stored impulsive t h e  his tor ies  of the state variables. Figure 3 

i l l u s t r a t e s  the  va l id i ty  of this procedure f o r  a typ ica l  computer run by 

comparing the in i t ia l  and convergedtime h is tor ies  of several Lagrange 

multipliers. The initial approximations t o  the s t a t e  variables were con- 

siderably better and, i n  most cases, differences between ini t ia l  approxi- 

mations and final converged values could not be detected when plotted t o  

the scale of Figure 3. The fact that  t he  state variables were init ially 

w e l l  defined was hportant t o  achieving convergence of the quasilinearization 

technique. 

VARIAELE LENCTH STORAGE TABLE 

Although straightforward application of quasilinearization will 

result i n  a solution of the  problems considered here, it was found 

necessary t o  employ a number of refinements t o  assure accuracy and 

proper convergence. For instance, when storing the  tabular values of 
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the  solution dn) f o r  use in producing X 

a method of maintaining integration accuracy over a l l  portions of the 

trajectory.  

storage density during the burning periods. 

quasilinearization process w a s  constructed about a storage table having 

variable storage intervals. Figure 4a i l l u s t r a t e s  t h i s  concept. The 

basic quasilinearization subroutine described i n  Ref. 11 w a s  programmed 

t o  integrate over each segment of the tab le  and t o  stop at the boundaries. 

A t  t h i s  point 

cess continued. 

SHIFTING STORAGE TAHLE 

it was necessary t o  provide - - 

That is, it was found necessary t o  increase the data point 

For t h i s  reason, the 

a new storage intervai  would be introduced and t h e  pro- 

Because the llbang-bangll control problem is inherently discontinuous 

A t  a t  t h e  corner points significant numerical problems are  encountered. 

such points one enters a new f l i g h t  regime wherein $”) has ent i re ly  

different  properties. 

interpolation across a switching point i s  not normally possible. 

For this reason, the performance of valid numerical 

As the  quasilinearization process converges the switching times 

indicated by the n’ th  i te ra t ion  will not coincide with those given by 

the n + l’st i terat ion.  

en t r i e s  it is  necessary t o  perform forward interpolation t o  arr ive at  

If the switching point occurs between two table  

appropriate stopping conditions and backward interpolation t o  arrive at 

appropriate numerical values t o  restart the integration. 

different  f l i g h t  regimes are  involved one finds t h a t  the  interpolated 

values at the switching point, i n  general, do not agree. 

the above problem resu l t s  i n  serious numerical errors  o r  convergence 

failure . 

Since two 

In many instances 
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One may employ another %rick” t o  insure numerical integration 

accuracy at  the corner points. 

new switching times a re  determined which, i n  general, w i l l  not occur at 

t h e  previous tabular values. 

the new switching times sre used t o  define the boundaries of each variable 

length storage array. 

of quasilinearization wi th  the  assurance t h a t  each stopping point coin- 

cides wi th  a table  entry. 

After each i te ra t ion  of quasi l inearhat ion 

A new table  then may be constructed wherein 

Tihis makes it possible t o  perform a new i t e ra t ion  

This newtable and i ts  relationship with tha t  

used in the  pr ior  i t e ra t ion  is  i l lus t ra ted  i n  Figure 4b. Note tha t  t h i s  

method eliminates the necessity of interpolating t o  obtain the values a t  

the stopping points. This numerical continuity across the corner points 

was found t o  be essential f o r  the accurate convergence of the  o rb i t a l  

t ransfers  considered hem. 

SWITCH POINT ANALYSIS 

As was pointed out ear l ie r ,  the llbang-banglf control process produces 

t ra jec tor ies  which are very sensi t ive t o  the in i t ia t ion ,  termination and 

duration of thrusting periods. 

ra ther  sophisticated process f o r  determining and controlling the switching 

times t o  be ut i l ized  in the determination of X .  h+l> . 

It was therefore necessary t o  employ a 

hr 

A numerical procedure f o r  determining the  zeroes of the switching 

function was employed at  the  end of each quasilinearization i terat ion.  

If t h e  new switching times showed large deviations f rm the previously 

used values, the  new times would not be adopted. Instead, the  program 

would s h i f t  the thrust i n i t i a t i o n  and telrmination times by a small portion 

of the  indicated change. 
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Newly determined switching times would be f u l l y  ut i l ized only when 

close agreement wi th  the previous i terat ion had been achieved. 

such close agreement could only be expected t o  occur after the quasili- 

nearization process had proceeded through several i terations.  However, 

once t h i s  requirement w a s  m e t ,  the  program w a s  completely free t o  use the 

switching times indicated by t h e  n ' th i t e ra t ion  during the  computation of 

the n + l 'st. The above programed constraints forced the solution t o  

conform t o  impulsive i n i t i a l  conditions u n t i l  the process had achieved 

suff ic ient  convergence t o  adequately control i t s e l f .  

s t r a in t  and without the judicious pse of the impulsive initial conditions 

it w a s  usually impossible t o  obtain convergence. 

In general, 

.) 

Without this con- 
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V. NUMERICAL RESULTS 

The forementioned IIM 7094 double precision program was uti l ized t o  

generate transfers between a r b i t r a q  coplanar non-coapsidal orbits. N m  

er ica1  results are  best described by comparing the optimal f i n i t e  thrust 

solutions with corresponding optimal impulsive transfers. 

C m O L  VARIABLES 

As was previously noted, the s ta te 'var iable  time h is tor ies  produced 

from t he  impulsive solution showed excellent agreement with the corres- 

ponding values f o r  the f i n i t e  thrust maneuver. 

found f o r  the control variables. 

Initial, f h l  and t ransfer  orbit8 corresponding t o  an optimal f in i te -  

thrust  t ransfer  are depicted i n  Figure 5 .  The orb i t  and vehicle para- 

meters a re  as follows: P1 = 5,000 m i . ,  P2 = 6,000 m i . ,  e = e = 0.2, 

w1 =-90°, u2 = +30°, /3 = .OOO1 m,,/sec. and i n i t i a l  F/W = 0.4. 

indicates the directions and relative magnitudes of t h e  two impulses 

(El and E2). 
coincides with its impulsive counterpart when plotted t o  the scale of 

Figure 5 .  

noted. 

Similar agreement was 

This is best i l l u s t r a t ed  by an example. 

1 2  
Figure 5 also 

The transXer orbi t  of the optimal f i n i t e  thrust  transfer 

The small arcs over which the  engine is burning are also 

Figure 6 presents a time history of steering angle, u , for the 

orb i t  t ransfer  maneuver depicted in Figure 5 .  Note tha t  only a small 

portion of the Steer- angle curve has physical significance. These 

two portions of the curve are expanded in the inset diagrams of Figure 6. 

The inset diagram a lso  give the  impulsive steering angle f o r  ccnuparison 
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with the  f i n i t e  thrust  solution, F o r t h i s  intermediate thrust  case, the 

t h r u s t  i n i t i a t ion  and termination times derived fram the impulsive solution 

differed by only a few seconds from those indicated by t h e  quasilineari- 

zation solution. 

The switching function f o r  t h i s  maneuver appears as Figure 7. It 

i s  clear  tha t  t h e  engine is bum&ng for a .sm=lll pnfi-ior? of the t o t a l  

time required f o r  the o rb i t a l  transfer. 

convergence of the quasilinearization process t h e  switching times must 

In order t o  achieve adequate 

be determined t o  approximately 0.001 seconds. 

and noting tha t  the maneuver may involve several thousand seconds, one 

obtains an appreciation f o r  the accuracy which must be maintained. 

Furthermore, when one considers t ha t  t h i s  accuracy must be maintained 

during the  computations inherent i n  Equation 21, it is clear  t ha t  double 

precision arithmetic is a necessity. 

CONVERGENCE AND VALIDITY TESTS 

Referring t o  Figure 7 

Several tests of a solution's convergence and val id i ty  a re  avail- 

F i rs t ,  because the best approximation t o  P(0) i s  u t i l i zed  f o r  able. 

each i te ra t ion ,  the C appearing i n  Equation 40 should approach zero as 

the process converges. 

Another test  of Convergence may be performed by noting successive values 

N 

3 
This provides the first t e s t  of convergence. 

of the  si given by Equation 42, 

also approach zero, One should also observe the switching times approach- 

ing appropriate constant values during successive i terat ions,  Also, since 

k must be zero at  each switch point one should observe appropriate tabular 

values of k becoming successively smaller with each i terat ion.  

the above convergence c r i t e r i a  were achieved during the computation of the 

During successive i te ra t ions  the si should 

A l l  of 
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solutions presented here. 

One may compute certain constants of motion as a test of the  

solution's val ia i ty ,  accuracy, etc.  

is given by Equation 27 must remain constant. 

possible t o  compute energy and angular momentum along the  coasting a rcs  

and note i f  these constants are r ea l ly  constant, 

presented here,  solutions wherein energy and angular momentum remained 

constant t o  more than eight significant figures were achieved, 

accuracy was achieved for  t h e  Hamiltonian. 

would not ordinarily be necessary fo r  engineering studies, it was re- 

quired f o r  the accurate comparison of f ini te  thrust  maneuvers and t h e i r  

impulsive counterparts, 

For instance, the Hamiltonian which 

O f  course, it is  also 

For a l l  of t h e  results 

Similar 

Although t h i s  extreme accuracy 

As a f i n a l  t e s t ,  the  converged solution X ( m ) ( 0 ) ,  was ut i l ized  as 

i n i t i a l  conditions f o r  a straightforward integration of t h e  Eu le r  Lagrange 

d i f fe ren t ia l  equations. 

compared with t ha t  generated by quasilinearization. 

t e s t  confirmed the val idi ty  of the  quasilinearization solution. 

MINIMUM FUEL WITH FINAL TIME OPEN 

The solution produced by t h i s  method was then 

I n  a l l  cases this 

Because the transfer time (T) derived from the  impulsive solution 

is s l igh t ly  nonoptimal additional computations must be performed t o  

determine tha t  t ra jectory which i s  the-opt imal  as w e l l  as fuel-optimal. 

Since the  Hamiltonian may be thought  of as the  partial derivative of final 

mass with respect t o  T it is necessary t o  adjust T un t i l  the  Hamiltonian 

approaches zero, This was accomplished by perturbing T and computing an 

additional fuel-optimal t r a j e c t o q .  This required several  additional quasi- 

l inear izat ion i terat ions.  The Hamiltonian corresponding t o  each of t he  fuel- 
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O f l b B l  t ra jec tor ies  -8 examined and simple linear extrapolation w umod 

t o  predict a new value of T corresponding t o  A = 0. Thus, it was possible 

t o  compute a t ra jectory fo r  which T was ltlocallyil optimal. 

AV REQUIF#fENTS (mPULsIVE THRUST vs. FINITE THRUST) 

Numerous optimal t ra jector ies  w e r e  computed in order t o  produce a 

comparison of optimal impulsive transfers and corresponding finite-thrust  

maneuvers. Figure 8 compares the velocity change ( A l l )  required f o r  

finite-thrust  and two-impulse maneuvers over a wide range of initial 

thrust-to-weight ra t ios  (F/W). It was  produced by beginning wi th  the 

t ransfer  maneuver depicted i n  Figure 6 and parametrically varying the  

specific impulse (note tha t  P was held constant). 

log plot of t h i s  data showed no devbtion from a s t ra ight  l i ne  (partrboh) over the 

range shown. The f ac t  that  t h e  impulsive o rb i t a l  t ransfer  i s  a very 

close approxination t o  the f i n i t e  th rus t  maneuver i s  verified by the small 

percentage differences i n  Figure 8. 

The original log- 

Another interesting comparison was produced by varying the re la t ive  

perigee angle ( A w )  of the two coplanar e l l i p t i c a l  o rb i t s  of Figure 6. 

Figure 9 demonstrates tha t  the difference i n  velocity change required for 

impulsive and the f i n i t e  thrust  maneuvers exhibits a strong dependence upon 

A w .  

and non-intersecting orbits.  

tangency (Am = 

The curve is divided in to  two regimes corresponding t o  intersecting 

Near t he  value o f a w  which corresponds t o  

53O. 1301) t h e  curve abruptly, but continuously, changes. 

This par t icular  phenomenon is best explained by reference t o  Figure 10 

which contains curves for the  two-impulse and f i n i t e  thrust  maneuvers as 

separate plots. Figure 10 concerns a small range o f A u  over which the 

o rb i t s  are "almost tangentf1. Since it was  known that the  class  of "almost 
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4 

. 

tangent" orb i t s  produced a number of interest ing resu l t s  (Refs. '7 and 8 )  

considerable effor t  was devoted t o  accuracy in examining these c r i t i c a l  

orientations. 

the orb i t s  do not intersect  and that the curves become separate as inter- 

section deepens. 

explains t h e  abrupt change noted in Figure 9 .  

difference depends upon the particular rocket parameters employed (e.g., 

specific impulses, mass flow rate,  etc.). 

Mote tha t  the t w o  curves are nearly coincident as  long as 

This  sudden diverging of the two curves i n  Figure 10 

The magnitude of t h i s  

In Refs. U ,  15 and 16 the existence of an optimal one-impulse 

maneuver was discussed. The two-impulse curve shown i n  Figure 10 con- 

t a ins  a small region over which a one-impulse t ransfer  between the two 

orb i t s  is  optimal. The f i n i t e  thrust  curve is composed of a number of 

points which are designated one burn maneuvers or  two burn maneuvers. 

Note thaL an optimal one burnmaneuver also ex is t s  over a small  range of 

Ab. Thus, one obtains conditions which are  again analogous t o  those 

found f o r  impulsive transfer.  

As in the impulsive case, the maneuvers represented by points 

d i rec t ly  on e i ther  side of the one burn region a re  characterized by 

en t i re ly  different steering angle, and thrus t  time histories.  To the 

l e f t  of the one-burn region t h e  first burn period is rather  s m d l  and 

the thrust  f o r  both burns is i n  the forward direction. To t h e  r ight  of 

the o n e h r n  region the second burn period is verg small and i t s  thrus t  

direction opposes the  vehicle'svelocity vector. Figure 11 presents the  

switching function time h is tor ies  associated with each of three kinds 

of f ini te  thrust  maneuvers considered i n  Figure 10. For the  two burn 

transfers the  duration of the  smaller burn periods was  a fract ion of a 
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t 

second as compared to about 300 seconds for the larger burn period. Some 

solutions which were near the boundary of the one-burn region exhibited a 

second burn period of .002 seconds duration and smaller. The extreme 

numerical accuracy required to produce the results of Figure 9 and 10 

should be evident. 
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. 
VI. CONCLUSION 

t 
The numerical results demonstrate tha t  the quasilinearization 

technique can be a powerful t o o l  for the  optimization of "bang-bang" 

control problems. 

t i on  t o  the solution i s  required t o  insure convergence. 

appears tha t  impulsive orb i ta l  transfer maneuvers provide an excellent 

approximation t o  t h e i r  f i n i t e  thrust  counterparts. For t h i s  reason 

most preliminary engineering design studies could be performed with 

simple economical impulsive transfer optimization procedures, thus 

avoiding a more time consuming and d i f f i c u l t  f inite-thrust  optimiza- 

tion. 

However, it appears that  a good first approxima- 

In general, it 
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APPENDIX % 

TWO-IMPULSE TRANSFER IN 
THE THREE-BODY PROBLEM 

q o t e  that t h i s  appendix i s  a separate paper having i t s  own nomenclature, 
i l lus t ra t ions ,  references, etc. 
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NOMENCLATURE 

A1'A2 

G 

H 

i Y L k  

I 

J 

P 

5 

Angles of Perigee and Perilune (Figure 4 ) 

Combination Coefficiezts of Homogeneous Solution Vectors 

Earth-Moon Distance (Semi-& jor Axis) 

General Symbol for Ekpression f o r  Time Derivative 
of xj, Col.m, vsctor 

Universal Constant of Gravitation Times Mass of Earth 
plus Moon 

Homogeneous Solution Vector (of Equation 19) 

Unit Vectors Along x,y, z 

Impulse r?) Jacobian Matrix 

Jacobi Integral 

Particular Solution Vector (of Equation 13) 

Distance t o  E a r t h  

Distance t o  Moon 

Time (Independent Variable ) 

Time of Travel on Transfer Trajectory 

Velocity Vector Components and Magnitude 

Position Vector Components 

General Symbol f o r  Dependent Variable,Column Vector 
of Dependent Variables 

Convergence Values f o r  X, a Column Vector 

1 

The Ratio Mass Moon t o  Mass Earth plus Moon 
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w 

0 

T 

t 

Angular Velocity of the  Moon i n  i t s  Orbit 

Subscripts 

For Departure Point a t  t = 0 

For A r r i v a l  Point at t = T 

Fer Trmsfer Trajectory 

Superscript represents the i te ra t ion  number, e.g. x(n> 

Underline s ign i f i e s  a vector i n  three dimensions. 
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. 
ABSTRACT 

A computer program f o r  finding two-impulse t ransfers  between 

given tenninal points i n  a fixed time i n  the three-body problem has 

been developed. 

i s  imagined t o  be a space ship,exerts a negligible a t t rac t ion  on the 

two large centers. 

t ra jectory and uses the  quasilinearization process t o  correct the 

t ra jectory so tha t  t h e  two-point boundary value problem is solved. The 

program and i t s  use a re  described i n  d e t a i l  and preliminary resu l t s  

showing excellent convergence properties are  presented. 

The only rest r ic t ion i s  tha t  the  th i rd  body,which 

It generates a Fatched conic t o  use as an i n i t i a l  

\ 

1. 
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I. INTRODUCTION 

Suppose it i s  desired tha t  a spaceship on some orb i t  i n  Earth- 

Moon space transfer t o  a new orbit by means of a two-impulse maneuver. 

While t h i s  problem is topologically similar t o  two-impulse transfer i n  

the  two-body problem there are t w o  significant differences from the 

computational and analytic points of view. 

o rb i t s  a r e  not generally cyclic and points along them cannot be re- 

presented by f ive  o rb i t a l  elements and an angle, 

of position and velocity are  used instead. 

i s  tha t  the given information concerning the departure and a r r iva l  points 

does not permit one t o  describe transfer orb i t s  as a known function of 

any one parameter, 

through two given points and i n  the two-body case one can choose, f o r  

example, the semi-latus rectum of  the  t ransfer  orb i t  a s  t he  parameter. 

It is  then possible t o  immediately compute the orbi t ,  the veloci t ies  

a t  both ends, and t h e  impulses. 

chose 

the  parameter. 

the impulses, i s  a major problem. 

the  work t o  provide a computer program t o  compute these quantities. 

That is, from the  given departure point (Bo i n  Figure l), the given 

a r r i v a l  point ( B  i n  Figure l), and the given time interval (T), the 

program i s  t o  determine the t ransfer  orb i t  t ra jectory,  the  veloci t ies  a t  

both ends, and the  impulses. 

In the  f i r s t  place the 

The six components 

The second major difference 

In general there i s  a single in f in i ty  of orb i t s  

In the  three-body case the author 

t o  span the in f in i ty  of orb i t s  by using time t o  t ransfer  as  

To obtain the orbit ,  the  veloci t ies  a t  both ends, and 

It w a s  the aim of t h i s  portion of 

T 

It was possible t o  accomplish th i s  for 
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the  reduced three-body problem i n  which the th i rd  body does not a f fec t  

the motion of the  two primarg bodies. 

i n  e i ther  c i rcu lar  or e l l i p t i c a l  o rb i t s  about t h e i r  center of mass, 

The two large bodies may move 

This program represents t h e  first necessary s tep i n  a longer 

range problem which is the  numerical analysis of two-impulse t ransfers  

i n  Earth-Moon space, 

of two-impulse t ransfers  can be undertaken. 

Now t ha t  it has been developed a systematic study 

SIB 66-1224 
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11. PRO- FORHULATION 

The computational problem involved i s  a highly non-linear two-point 

boundary value problem and the  method of solution u t i l i z e s  a generalized 

Newt on-Raphson") technique which is called quasilinearisation. 

In the  complete program as it i s  described below the  input and 

output coordinate systems may be centered at the Earth,  the  Moon, or 

t h e i r  barycenter and t h e  systems may be rotating or iner t ia l .  However, 

t he  computations are  all managed i n  the rotating system centered a t  t he  

barycenter and the  problem w i l l  be described i n  this system. The equa- 

t ions  of motion are eas i ly  derived us ing  the  Lagrangian procedure. Extra 

tenus involving C; occur since the rotat ing system usually does not 

ro ta te  uniformly. W e  find: 

(l-IJJG(x+ D) - + ;y 
2 PG(X-( 1- cl)D 1 

3 2 
u = 2wv + w x  - 

S 

. 
x =  U . 
y = v  . 
z =  W 

As shown in Figure 1 the xy plane i s  the plane of t he  Earth-Moon motion 

and the  x axis i s  directed toward the instantaneous position of the  moon. 

G is the  universal gravitational constant times t h e  t o t a l  mass of the  
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. Earth-Moon system, )I equals the mass of the moon divided by t he  t o t a l  

mass of the  system, D i s  t h e  Earth-Moon distance (or a semi-major axis 

of t h e  orb i t  i f  it is e l l i p t i ca l ) ,  and w is  the  angular velocity of the  

system. 

assumed t o  be in circular  orbi ts  t he  equations simplify somewhat since 

For t h e  res t r ic ted  problem in which the  two primaries a re  

= 0 and they possess a w e l l  known integrai ,  the  Gacoti kit8grs1, 

which i s  

r S 

Two different  uni t  systems are provided f o r  in the  program. One 

is  based on the metric system using kilometers f o r  distance and seconds 

f o r  time. The second system uses lunar units f o r  which w = 1 rad per 

unit time, D = 1 lunar distance, and G = 1 (1.d.) /(U.T.) 3 2 

Y 

EM = D 

EO = M D  

B, = DEPARTURE (uo, v0t Won X o r  Yo. 

BT = ARRIVAL (UT, VT, WT, XT, YT, ZT,) 

Figure 1. The Rotating Coordinate System 
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. The problem is described as follows. 

(xo,yo,zo), the f i n a l  position ( ~ , Y T , Z T ) ,  t h e  time (T), and the  general 

shape of the desired t ransfer  trajectory, we wish t o  f ind  the t ra jec tory  

and the  veloci t ies  a t  t = 0 and t = T. 

velocity (uto,vto,wt0) at  t = 0 which will cause the vehicle t o  arrive 

a t  (+,yT,zT) at  the time T l a t e r .  The solution i s  t o  be accomplished 

using the quasilinearization procedure which i s  described i n  Appendix A 

Section 111, and in Ref .  1. 

(Eqs. 1 t o  6 )  i s  of the form of Equation 35 (App.A), and that the feasi- 

b i l i t y  of using the  procedure depends upon finding analytic expressions 

f o r  the derivatives of the  right hand sides (gi) with respect t o  the 

six variables (X ), Le. ,  upon obtaining the Jacobian matrix, J. 

i s  easily accomplished and the  matrix f o r  the general three-body tra- 

Given the i n i t i a l  position 

T h a t  is,we wish t o  f ind the 

It i s  seen tha t  t h i s  s e t  of equations 

This 3 

jectory i s  given in Equation 8. 

J= (Jij) 

where 

0 2 0  0 w 2 - ~ + ~  &+By Bz 

wz 
2 -A+CZ 

($4 -2w 0 0 *+Ep 

0 0 0 BZ CYZ 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
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2 + -  '' G (x-(l-p)D) 
3(1-~)G(x+ D12 E = +  

: r; 
r' S' 

The (n+l) ' th  i t e r a t i o n  X (n+l), i s  obtained as follows from the  

n ' t h  i t e ra t ion ,  X(n), and t h e  approximate d i f f e r e n t i a l  equation (Eq. 37, 

App. A i n  matrix form): 

A par t icu lar  integral ,  P, i s  obtained from the  previous time h is tory  by 

integrat ing Equation 13 s t a r t i ng  with the  initial values f r o m  the  last 

i t e r a t i o n  (uo ,vo ,w0 , ~ , y o , z O ) * .  A t  the  same time a set of three 

homogeneous solutions t o  

(n) (n) (n)  

i= J(X(")) H 

are generated with i n i t i a l  conditions (V1,O,O,O,O,O)*, (0,V2,0,0,0,0)*, 

and (0,0,V3,0,0,0)*. The l inea r i ty  of Equation 7 i n  X (n+l) allows t h e  

new i te ra t ion ,  Equation 10, t o  be P plus  a l i nea r  combination of t he  

three  solutions. 

+ c H  ,(n+l) = P + clHl + c2H2 3 3  

The coeff ic ients  ( c  ,c ,c ) are determined by requiring the solution t o  

sa t i s fy  the  boundary conditions at t h e  final posit ion (5,yT,zT).  

Whe vectors X,g,H and 

1 2 3  

are rea l ly  column vectors but t he  initial values 
a re  printed here as rows f o r  convenience in typing. 
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A s  explained i n  Appendix A (p. 13) convergence of t he  process is 

examined by evaluating the  maXimrrm change ( a t  any point) between successive 

i te ra t ions  in each coordinate (Equation 42, App. A). 

Only when every cmponent of 6 has sa t i s f ied  given conditions is the 

procedure declared t o  have converged. 

A t  the  end of each i te ra t ion  the impulses are  computed at  the  

beginning and a t  the end of the trajectory.  We use 

If the  process converges within the  assigned l i m i t  of i t e ra t ions  

the  program transfers  t o  a mode in  which the actual  equations are inte- 

grated with the complete se t  of initial conditions as determined by 

QASLIN. The vector, E,  now gives the differences between the  final 

i t e r a t ion  and t h i s  in tegra l  and it will indicate how w e l l  this final 

in tegra l  represents the solution t o  the desired problem since the 

differences between the  coordinates of the  final point reached and those 

of the  given end point a re  included in the  comparison. 
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a. 

b. 

C. 

d. 

111. COMPUTER PROGRAM DESCRIPTION 

A computer program written in double precision FORTRAN IV language 

has been developed f o r  solving the problem of finding two-impulse trans- 

fers between given points i n  Earth-Moon space. It was  developed t o  pro- 

vide wide capability arid has the following set af gefieid prtpertfzs:  

The initial and f i n a l  conditions can be given i n  any two of a ser ies  

of coordinate systems centered a t  the  Earth or  t h e  Moon or  t he  bary- 

center. 

o rb i t s  are  permissible. 

Two u n i t  systems are presently available: metric with kilometers and 

seconds o r  lunar units with o = D = G = 1 (see Equation 1-6 above). 

The t o t a l  t r i p  time, however, must be given in hours. Provision f o r  

a t h i rd  system exists i n  the program. 

provided in a single short subroutine and can easily be changed. 

Real time with the i n i t i a l  epoch i n  modified Julian Days may be used 

and the Moon's posit ion will be determined by the  program. 

motion of the lunar orbi t  node and perigee during the t r i p  time a re  

neglected. 

i n i t i a l  position anywhere i n  i t s  orbit .  

The orb i t s  of t h e  Earth and Moon may be assumed t o  be c i rcu lar  or  

e l l i p t i ca l .  

Orbital elements f o r  close Earth orb i t s  and/or close Moon 

The actual  constants used a re  

The secular 

O r ,  an a r t i f i c i a l  reference time may be used with the moon's 

A block diagram of the  overall computer program is  shown in Figure 2. 

The general operation of the program is c lear  from t h i s  diagram and the 

d e t a i l s  of using the program a r e  described below under the  following 
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b COMPUTE IMPULSES AND PRINT IF NOT 
RESULTS O F  ITERATION CONVERGED 

, 

NUMBER 
OF ITERS. 

w 

I 
I 
I 

READ CONTROLS 

MP 

READ DATA 

I PUT 

SET UNITS AND CONSTANTS 

UNITS 

CHANGE DATA AND 
SET NEEDED CONTROLS PRINT DATA AND CONSTANTS 

MP 

1 NUKAS 
EARTH-MOON POSITIONS 

AT START AND END 
EMOON 

TRANSFORM BOUNDARY 
CONDITIONS TO ROTATING FRAME 

I 
TRN FRM 1 

I SET QASLIN CONTROLS 1 
MP 1 

1 
I 

INITIAL TIME HISTORY 1 
QASLIN4IN 

QASLIN ITERATION 

QASLIN 

TEST CONVERGENCE SET PRINT AND 
ITERATION CONTROLS 

1 QASLIN I i w I I 

IF CO+ERGED u 
1 I 

I INTEGRATE EOWTIONS OF MOTION 
AND PRINT RESULTS OF I INTEGRATION 

LIMIT EXCEEDED 

USES LAST TIME HISTORY 

I 
TEST F O R  NEW NEW DATA 

CASE NEW DATA AND CONTROLS 
r 

I J 
MP 

EXIT 
-- --?-I 

Figure 2 - Flow Diagrau-Fir Two-hpulro Ccmputrtion 
7 0  
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headings : 

1. Input Data Coordinate Systems 

2. Constants 

3, Data Entry 

4. Program Controls 

5 .  Time History Storage 

6. Initial Time History 

7. Subroutine QASLIN 

8. Program output 

This program has been designed with a great f l e x i b i l i t y  for input 

conditions, 

exceeding the  allowable 

necessary t o  make use of two s l igh t ly  d u f e r e n t  versions. 

obtained by using dummy subroutines when a job is  being sent which does 

not use a par t icular  section. Since the  portion of the program f o r  the 

computations of the  init ial  time his tory i s  used only once for a given 

case and is  independent of the l a t e r  i t e r a t ion  process it i s  believed t h a t  

an overlay process can be developed which W i l l  require very l i t t l e  extra 

computer time, 

of time storage points if  accuracy requirements should demand an increase. 

Unfortunately, at  t h i s  moment the  program is  so close t o  

storage on the IE44 7094 tha t  it has been found 

These a re  

This would allow a fur ther  increase in  the t o t a l  number 
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1. Input Data Coordinate Systems 

As already mentioned, the initial and final boundary conditions may be 

These are given in Earth centered, Moon centered, or barycentric systems. 

specified by the values ICORC(1) = J where: I = 1, 2 for initial, final 

conditions; and J = 1, 2, 3 for Earth, Moon, barycenter. 

IROTS(1) further identifies the systems according t o  the scheme shown in 

Table 1. 

A secand integer 
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J=1 
Earth Centered 

Rotating 1 x 4 s  toward 
System moon - x y  plane 

is LOP 

\ 

L 

J==3 
J=2 Baxycenter 

Moon Centered Centered 

x axis opposite x axLa 
ear th  toward moon 
x y  plane is LOP xy plane i s  

LOP 

L 

T 2 non 
rotat ing 
system 

x d s t o w a r d  x a i s t o w a r d  xaxis 
moon's orbi t  moon's o rb i t  toward 
node on ecliptic node on lunar mo on's 

plane is U P  equator orb i t  node 

Cartesian 

conditions 
boundary x d s  toward 

vernal equinox 
xy plane i s  
ec l ip t ic  

o rb i t a l  
elements 
for 
boundary 
conditions 

x A s  toward not used 
node 

plane i s  
lunar equator 

I xj plane i s  UP on ec l ip t i c  1 I 

x d s  toward 
vernal equinox 
q plane is 
equator 

not used not used 

same as 3 

I same as 2 I same as 2 /not used 

same as 3 not used 

1 same as i.+ I same as 4 lnot used 
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4 

2. Constants 

The constants used in the program a r e  l i s t e d  i n  Table 2. 

were obtained from the American Ephemeris and Nautical Almanac. 

(o), semi-jor axis  (D) ,  and G are adjusted t o  sa t i s fy  o2 = G / g .  

Most of them 

Mean Rate 

TAHLE 2. LUNAR ORBIT AND ASTRONOMICAL CONSTANTS 

Eccentricity 

Mean Orbital Rate 

Incl. LOP t o  Ecliptic 

Incl. LOP t o  Lunar Equator 

Incl, Ecl ipt ic  t o  Earth's Equator 

Semi-ma jor axis 

Gravitational Constant Times 
Total Mass 

Ratio Mass Moon/Total Mass 

Ref . Date. JD 2,439,00005 

Asc. Node a t  Ref. Date 

Asc. Nodal Rate 

Perigee a t  Ref. Date 

Perigee Rate 

M e a n  Anomaly at Ref. Date 

Mean An0rmal;g Rate 

.054900489 

13.17639 65268 "/day = o 

5.1453964' 

6.6804O 

23.44436O (Epoch of 1950) 

384747.87 km = D 

403505.3 d / s e c 2  = G 

1/82.30 = M 

A u g .  28,1965 0 hr. U.T. 

69,3226 O 

- 0529539222O/d~ 

5 6 . 5 2 ~ ~  

.16435 80025 O/day 

41.16000 

13.06499 24465 */day 
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4 

, 

* 

3.  Data Entry 

The procedures used in supplying controls and data t o  the  program are 

shown in  Tables 3 and 4. 

main program and the  data shown in Table 4 are read by the  subroutine 

INPUT. 

in the  deck. 

The controls shown i n  Table 3 are read by t he  

The cards of Table 4 follow those of Table 3 with no separation 

ard No. 

TART3 3. INPUT CONTROL CARD FORMAT 

6D12.8 

4D12.8 

U . 8  

3a 

6~12.8 

6EU. 8 

6(E9.3,13 

Fortran Symbol 

X I (  1)-XI( 6) 

/ 

XI( 7 )-XI ( 10) 

NOSTEP, NINTPl, 
N ( 4 )  

RHOS(l)-RHOS( 6) 

RHOS( ?)-RHOS( l 2 )  

TSUBT( I),KSUB( I) 

I = 1, NIIUTPI 

Identification 

XI are i n i t i a l  values for 
homogeneous solutions (there 
are 10 max. ) i n  units des- 
ed. 

XERR = controls NOSTEP if 
NOSTEP = 0 

NOSTEP = No. of s teps  per 
time storage interval. 

NINTPl = 1 + N o .  of time 
sections(max. 10) 
N ( 4 )  = print control 

RHOS are convergence to l -  
erances on variables 

Time (in hours) at section 
breaks i n  time his tory 

Step numbers from beginning 
(max.value KSUB(NINTPI)) = 
125 
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t 

lard No, 

6 

7 

8 

9 

10 

11 

Extra 
cards 
as 
needed 
f o r  
i n t  egera 

Foxmat 

1216 

6 U .  8 

6~12.8 

6~12.8 

4D12.8 

416 

361.2 

TABLE 3 .  con't. 

Fortran Symbol 

SPARE (1) - (6) 

DTI, DTF, 
DVARI, DVAR2 

NCM,NICH( 1)-( 3 ) 

m( j ) ,DTI(J ) ,  
IDTF(J),IDPT(J), 
IDDF( J), ICO( J) 
J=1, NCM 

Identification 

N(3) = No, of i te ra t ions  
allowed. 
NREAD, NQ1, ISETUP not used. 
N D I F  = No. of differences, 
3 max, allowed (but see 
notes) . 
G?(I) = NQ* of dimensions 

(2) = Flag f o r  Special 
problems 

(3)-(7) = not used 

U s e d  t o  t ransfer  infomation 
t o  subroutines XINM and 
those it c a l l s  ( f i r s t  time 
history section) , 

Increments i n  initial, 
final positions; 

initial, final veloci t ies ;  

i n i t i a l ,  final times; two 
other variables f o r  cases 
using last time history. 

NCM = t o t a l  number cases 
based on the  initial problem. 
(max is 30) 
NICH(~)  = control f o r  next 
case; NICH(2),(3) = not used. 

NN(J) = case no. (not used) 
IDTI( J) 
IDTF( J) 
IDPT( J )  Integral  mult ipl iers  
IDDF(J) f o r  increments 
ICO(J) These can be -9 to 

99. 
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:ard No. 

D1 

D2 

D3 

D 4  

D5* 

Foxmat 

TABLE 4. IWUT DATA FORMAT 

216, 4I3, 
2i6 

3 E U .  8 

6 U .  8 

6m. 8 

6~12.8 

18UC 

-- 

Fortran Symbol 

LOFM, IRAT, ICORC(I), 

IMORTA 
mors( I), ICOEL, 

IdentiPication 

LORM= 1 Lunar unit = 2 
metric units = 3 not 
specified 
I R A P  1 real time= 2 
artificial time 
ICORC, IROTS f o r  specifying 
coordinate system (see 
Table 1) ICOEL = 1 moon's 
orbit circular = 2 moon's 
orbit elliptical 
IMORTA =moon's initial 
position given in mean (=I) 
of true (=2) anomaly. 

not used 

Initial, final position 
vectors (If orbital elements 
a, e, incl.) 

Initial, final velocity 
vectors (If orbital elements 
perigee, node, angle from 
node ) . 
Initial, final times' (Hours) 
N.B. TI must = TSUBT(1) but 
these do not have to be zero 
TF must = TSUBT (NINTP1) 
MOon's initial position: 
node, perigee, anomaly (DegJ 
Epoch of time scale for T I  
and TF in MJD for real the 
cases, 

N1= Number of variables 
NC = 0 
~ ( 1 )  = no. of points to be 
connected by linear segments 
for variable numbered I 
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TABLE 4. INPUT DATA FORMAT con't. 

lard No. 

D6* 

&tra 
za,ds 
as 
needed 

Format 

D 6 . 3  

Fortran Symbols Identification 

Z ( K ) ,  W(K) = (time, value 
of variable). L i m i t  i s  
50 pairs 

When using linear segments as t he  initial estimate of the trajectory- 

7 8  
SID 66-1224 



NOSTEP 

4. Program Controls 

Use of the program controls and the data input procedure is des- 

cribed below. 

required by subroutine QASLINwhich can manage a t o t a l  of I2 variables 

having 10 initial boundary conditions t o  be found. In the  two-impulse 

problem there are either 6 varizbles e t h  3 iii-k~em hitid bmmxtary 

conditions f o r  a three-dimensional case or 4 variables with 2 unlcnown 

initial boundary conditions for t h e  two-dimensional case. 

of the  variables then proceeds as %,*,?.,x,y,z o r  jC,f,x,y f o r  the three 

and two-dimensional situations. 

boundary conditions i n  the rotating system are  printed on the  first two 

pages of output. 

1,2,3,4, r e fe r  t o  the cards D1, D2, D3, D 4  of Table IV. 

A list of variables and t h e i r  def ini t ions follows: 

Many of the storage dimensions of the variables are those 

The numbering 

The data and controls along with the 

A sample i s  included as Figure 3. The card numbers 

XI( I> These a re  t h e  values V1, IT2, V3 

non-zero i n i t i a l  values used for the  ser ies  of 

homogeneous solutions a s  described in the text 

following EquaLion 4. 

The s t e p s i z e  or equivalent, NOSTEP, is  

determined from the  5th root unless NOSTEP 

is given direct ly .  

The number of integration steps per time 

storage interval.  

desired but a maximum of 3 is suggested since 

t h e  second order interpolation on the  previous 

time his tory uses values at  the storage points. 

etc. of t h e  

This can be as large as 
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NINTP1 
I 

RHOS( 12) 

TSUBT( I), KSUB( I) 

NREAD,NQl, ISFZ'UP 

NDIF 

The t o t a l  time of t he  t ra jec tory  can be divided 

into as many as 9 sections i n  each of which the  

step-size interval i s  constant. NINTPl number 

of such sections plus 1. 

Print control (each integer above 0 adds the  

items l i s tad  to the 0;lti;nt) 

0 = Final solution is only printed 

1 =  Time his tory at  end of each i te ra t ion  

2 = Partial integral (P) and H I S  during 

integration 

The values of the  differences of t he  variables 

t o  be compared with the vector 6 .  Convergence 

i a  said t o  have occured when f o r  every ccanponent 

6 L P .  The uni t s  must correspond t o  those 

computed by the program a s  no conversions are 

used . 
The boundaries of the time storage sections and 

the corresponding s tep numbers (times i n  hours). 

The maximum number of i te ra t ions  allowed for 

the QASLIN routine. 

Not used. 

Number of differences used i n  the Adams: 

Moulton integration (3 maximum allowed). If 

larger than 3, 3 is  assumed and 4th order 

Runge-Kutta-Gill integration will be used for 

NDIF steps before the  program switches t o  t h e  
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SPARE( 1) 

SPARE( 2) 

SPARE (3  

SPARE ( 4 )  

Adams-Moulton integration f o r  the remainder of 

the time. 

Number of dimensions of problem (2 or  3). 

1-noxmal problem 

2-special problem setup. (Dummy at present) 

Not used 

Used for  transfer of information to XZNM and the 

subroutines it calls. (The initial time history 

section) . 
If negative the Linear segmented input routine 

is called. 

center of initial point when barycentered 

system is used for init% conditions, Le., 

when ICORC(1) = 3. 

Used to give conic center OX f i n a l  point when 

barycentered system is used f o r  final conditions; 

i.e., when ICORC(2) = 3. 

Angle of perigee of earth centered ellipse 

(measured C.C.W. fram direction opposite the 

moon) (see Figure 4). 

Angle of perilune of moon centered conic, 

measured C.C.W. from X axis. (see Figure 4). 

RLIM = SPA€E(S)*D (see Figure 4). 

Not used. 

If positive, used to give conic 
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DPI(K), DPF(K) 
DVI(K), DVF(K) 
DTI, DTF 
DVARL, DVAR2 

NCM 

NIGH( 1) 

IDTI, IDTF, IDPI, 
IDPF, IC0 

N I  

NC 

Increments f o r  changes i n  boundary conditions 

f o r  new cases based on the previous case. For 

each new case each variable new value = old value 

plus increment *ID XX (IDPI i s  used f o r  both 

DPI and DVI and similarly f o r  IDPF), DVARI i s  

increment i n  lunar position, DVAR;! not used, 

K = 1, 2, 3 

Maximum number of cases based on a given solu- 

tion (maximum is 30). 

Control f o r  new case 

1= new data and new controls 

2 = new data  only 

3 = e x i t  

Not used 

Not used except that f o r  NN(NC) = 81, 82 

I C O E L  is s e t  t o  1, 2. 

All dimensioned 30, as is  NN. These are 

integral  multipliers f o r  increments i n  corres- 

ponding quant i t ies  and they can be from -9 t o  

99. 

The number of variables of the problem. 

T h i s  must equal 0. 

capability of the subroutine XILS not now 

Other values are f o r  a 

required by t h i s  program. 

The number of points t ha t  detemine the -ear 

segments f o r  variable numbered I. This is one 

more than the  number of segments desired. 
84 
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(Time, Value) pairs. Note that the time m u s t  

be in the units called for by the program and 

that the pairs for each variable are grouped 

together, Le .  the first M(1) pairs refer t o  

the M(l)-l sections for the variable p or 2) 
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5. Time History Storage 

A t  the  mament the maximum number of storage points is set at 125. 

Since the  QASLIN integration procedure i s  capable of handling a change in 

step-size it is  permissible t o  divide the  t o t a l  time and the  125 points 

in to  sections of constant step-size as in Figure b o r  4b, page 37, 

Appendix A. 

small step-size can be used fo r  accuracy because the forces of a t t rac t ion  

are large and vary great ly  over short distances. 

distances longer step-sizes w i l l  give equivalent accuracy. 

use of the available s teps  i s  a subject f o r  study after the program is  

running. 

consideration, as noted above, w i l l  require some streamlining of the 

program so a s  not t o  exceed core o r  the  use of an overlay maneuver on 

the computer. Very large increases in step-size between sections has 

been found unsatisfactory i n tna t  the extrapolation fo r  new large intervals 

is  very much less accurate t h a n  t h e  computation fo r  the previous steps. 

It is  best t o  keep t h e  step-size change t o  a fac tor  of two t o  four .  

This is desirable so that when near the ear th  o r  moon a 

Over the  intermediate 

The optimal 

The t o t a l  number of s teps  might be increased somewhat but t h i s  
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6. I n i t i a l  Time History 

In order t o  begin the  p s i l i n e a r i z a t i o n  process it is necessary t o  

generate an initial guess f o r  the time his tory of a l l  the variables (X). 

In many cases this can be very crude but f o r  highly sensit ive and ex- 

tremely non-linear problems t h e  first guess may have t o  be carefully 

made i n  order t o  obtain convergence on the desired solution. Two-impulse 

t ransfer  i n  t h e  three-body problem presents such a s i tuat ion if the  tra- 

jectory sought is t o  t ransfer  from the  space near one body t o  t h a t  near 

the  other. 

The motions envisaged fo r  study so far have been those f a i r l y  close 

t o  the  lunar orb i t  plane (LOP). The motion out of the  plane has been 

assumed t o  be l i nea r  and decoupled from the motion in the LOP, but a 

sinusoidal form could be u t i l i zed  with very l i t t l e  additional programming 

if  it is needed. 

Three approaches f o r  obtaining a first time his torg in the LOP have 

been u t i l i zed  in  t h i s  study. 

two-for-one Lissajous f igure with variable amplitude t o  obtain an approxi- 

The first was  an attempt t o  f ind a simple 

mate trajectory.  T h i s  form did succeed in the case tes ted but required 

several i t e ra t ions  before the t ra jec tory  was rea l ly  close t o  convergence. 

In addition, it w a s  f e l t  that because one has t o  put i n  a rb i t ra ry  varia- 

t ions  i n  the  velocity formulae t o  approximate the lunar t ra jec tory  

veloci t ies  more rea l i s t ica l ly ,  the  technique may not be very satisfactory.  

With the  hope of reducing the  number of i t e ra t ions  required f o r  

convergence, patched conic procedures were then setup fo r  the first t h e  

history along with controls so t h a t  the  various types of Earth t o  Moon, 

Earth-Earth, Moon-Moon and Moon t o  Earth transfers could be studied. 



t 

In addition a linear segmented time his tory program allowing up t o  50 

pa i rs  of points t o  produce linear segments f o r  all variables w a s  available 

and it was  adopted f o r  use in this program. All three schemes have been 

made t o  yield sat isfactory f i r s t  time his tor ies ,  however, because of its 

a r t i f i c i a l i t y  the  first scheme has, f o r  the present at least, been dropped 

from the  program, 

Only one comparison between l inea r  segmented and patched conic cases 

has been made so far and t h i s  was f o r  an Earth t o  Moon t ransfer  requiring 

4 9  hours, 

present as closely as possible the  r e su l t s  from a portion of a run made 

using the Fehlberg three-body problem integration program developed a t  

MSFC, 

vector of values .OOOO1 ld/ut, .ooOOl ld/ut, .000001 Id, .ooOOOl Id, 

The very same problem using the patched conic routine likewise required 

8 i te ra t ions  t o  the same degree of convergence and it did not require any 

previous knowledge of t h e  trajectory except the general shape, i.e, that 

it i s  retrograde around the  moon, 

patched conic technique i s  t h e  most effect ive one t o  use. 

The l i nea r  segments for t he  t ra jec tory  were chosen t o  re- 

Eight i t e r a t ions  were needed t o  accomplish convergence t o  a 

Consequently, it is concluded that the 

The patched conic scheme has been programmed f o r  Earth t o  M o m  

transfers with retrograde motion around t h e  Moon, and f o r  Earth-Earth 

transfers in which both the  initial and final points are on o rb i t s  around 

the  Earth, In all cases themotion is considered t o  be on a conic section 

in the rotat ing system, tha t  is, the computations a re  performed i n  the  

standard 

The 

Earth t o  

rotat ing system and the f a c t  t h a t  it is not i n e r t i a l  is ignored. 

specific de t a i l s  t o  be supplied t o  the  patched conic routine f o r  

Moon t r a j ec to r i e s  are the  pericenter angles A1,A2, and RLIM as 
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. shown in Figure 4. 

Y 

EARTH ELLIPSE 

N O T E  : Pi AND P2 ARE PERIGEE AND PERILUNE 

Figure 4. Patched Conic Geometry for Earth t o  Moon Transfers 

These quantit ies a re  supplied through the use of SPARE(1) as follows: 

A1 = 
SPARE(3) = Angle of Perigee (Pl) i n  Deg. 

A2 = 
SPARE(&) = Angle of Perilune (P2) i n  Deg. 

RLIM = SPARE(S)*D 

I 
I 

/ 
1 

0 
/ 

/ 

M 

MOON CONIC 

The semi-major axis of the Earth section conic is  chosen by means of the  

formula 

a = (.7U - (TF - T I  - 80)* .OOl.)*D 1.u. 

This was developed t o  give a reasonable value for an eighty hour t r i p  
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t o  the Moon and s l igh t ly  higher s&--major axes for shorter t r ips .  

scheme was chosen rather  than one assuming tha t  the period should be 

proportional t o  t h e  t r i p  time, since t h i s  c a l l s  f o r  a variation in rrall 

of the proper direction as far as energy is concerned, 

eccentr ic i ty  is determined from t h e  ini t ia l  point since the true anomaly 

is known. 

T h i s  

Finally the  

The Earth section conic is followed u n t i l  the distance from the 

Earth exceeds the  value RLIM, 

final one, A = % are used t o  dete-the lunar conic. 

has been chosen the lunar conic is now fixed and i t s  elements are deter- 

mined. 

conic, 

between L and A divided by the remainhg time t o  go, thus assuring a r r i v a l  

at  A a t  the proper time, 

improper ra te ,  the velocity time his torg contains the  velocity components 

corresponding t o  the proper rate. 

Then the  previous point (L) and the 

Since perilune 

The program can manage e i the r  an el l ipse,  or a hyperbola f o r  t h i s  

The m e a n  anomaly r a t e  is taken t o  be the mean anamaly difference 

Although t h i s  orb i t  may be traversed a t  an 
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7. Subroutine QASLIN 

A double precision subroutine for managing a quasilinearization 

operation as outlined in Section I1 above has been developed by McCue 

and Radbill (Ref.  2). The details of its use i n  the present program are 

given in Section I11 (Table 3) and Section IV under the items l i s ted  for 

the first six control cards. 
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8. Program Output 

As shown in Fig. 3 , the output consists first of the input data i n  

its en t i r e ty  and the boundary conditions which include the initial and 

final positions of the  Moon in its o rb i t  as w e l l  as the boundary values 

f o r  the  departure point and ar r iva l  point of the  space ship inlhe rotat ing 

bqcefiter system. 

In case the ini t ia l  time history i s  generated by using conic sections, 

the  o rb i t a l  elements of the conics are printed. 

i s  the initial time history ( i f  called f o r )  which is printed by QASLIN 

according t o  the value of N ( 4 )  a s  explained in Section IV (see also 

Table 3, card 2). 

The next i t e m  of output 

Then follow the values ( a t  t = 0 ) of the  Jacobian (J) ,  the  derivatives 

(gi), and six other quantities including the distances t o  the Earth and 

Moon printed by the  subroutine JACOB which computes them. 

served as a means of checking the computation of these quantit ies and it 

T h i s  has 

remains in the program. 

The amount of output per i t e ra t ion  is controlled by N(4) as i s  ex- 

plained above i n  Section IV except that when integrating the equations of 

motion with the converged values f o r  the initial velocity, the  pr in t  of 

t he  time his tory i s  produced by the  subroutine JACOB. 

h is tory i s  printed (except f o r  t h e  i n i t i a l  time history) t h e  value of the  

Jacobi in tegra l  (Eq. 7) f o r  res t r ic ted three-body problem is computed and 

printed. 

an indication of the accuracy of t he  integration techniques. 

Whenever a time 

The degree t o  which t h i s  value stays constant (when = 0) i s  

The minimum output at the  conclusion of an i t e r a t ion  consists of a 

matrix giving the equations t o  be solved f o r  c1,c2,c3 (of Fq. Ut), the  
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and the  vector E . In addition, for this problem the  1’ ‘2’ ‘3 values of c 

impulses at  both ends are determined and printed each time an output time 

history of t he  variables is called, 

The de t a i l s  of t he  output can be varied by controls i n  the  various 

subroutines as is indicated by the  current usage and the  existence of 

unused items on the data cards and i n  tne labelled common regions of the  

program. when the applications of the  program are more fully developed 

an output plan giving only the needed d e t a i l s  can be used. 
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I ’  
PRELIMINARY RESULTS 

0 

t 

Two different transfer orbit  cases have been used so far i n  t e s t ing  

The first is a case using lunar units, the boundary condi- the program. 

t ions  f o r  which were taken from two poinlsalong a periodic t ra jectory 

canputed with the double precision Fehlberg program. 

69.8 hour f l i gh t  f rm very near the ear th  t o  very near the moon using 

real time and e i ther  two  o r  three dimensions. 

are  f o r  t h i s  second case i n  three dimensions. 

As has been indicated the variation in the value of the  Jacobi 

The second is a 

The input data of Figure 3 

integral  along t h e  trajectorymay be taken a s  a measure of the accuracy 

of the trajectory.  The values found f o r  the final time history as given 

by the quasilinearization technique and thosfound by direct  integration 

of the or iginal  equations w i t h  the init ial  conditions found agree t o  the  

accuracy of the comparisons given below and thus no dis t inct ion between 

them is  made. 

Fehlberg case (Case 1). 

in the time step-sioe in  the  first of these runs leads t o  a substantial  

discontinuity i n  the value at the change over point. 

shows that t h i s  d i f f i cu l ty  has been almost completely corrected by 

keeping the step-size r a t i o  under 4. 

In Table 5 a r e  shown the  r e su l t s  f o r  two  runs using the 

It can be seen tha t  the very large increase 

The second run 

In order t o  maintain a constant value of t h e  integral near t h e  Earth 

o r  Moon it i s  clear  f romth i s  table  and other similar cases t h a t  a small 

step-size is needed. 

scheme apparently affects t h e  variation when near the Earth. 

In this case also it is seen t h a t  the  integration 

The step- 
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Table 5. Behavior of Jacobi Integral Case 1 
(Value from Fehlberg run 2.08602504 (ld)2/(ut)2 

Integration 
Technique* 

~- - 
! d 

Time Step Value of Integral 
Used at boundary steps Distance to Earth 
Number Steps (with note) (ld/ut)2 (/and Moon) Id  

R w e  
Kutta 
G i l l  

220 min 
for 40 steps 

Ad- - 
Moulton 

e 

2.085 619 1935 
(rapid r i se  then 

2.086 201 1,2lO/. 215 
nearly constant ) 

.0617 

I ,0860 

7.5 min 
fo r  24 steps 

I I I 

I I I 

2.087 435 

(2: z 3 
2.086 036 

16.8 min 
f o r  25 setps 

I I 

I I 

037 

023 
(low OX)) 

%(See note on 
NDIF in 
Section 4) 

120 min 029 0 6 0 0  
for 20 steps 029 .943/. 618 

210 min 029 . 966/.602 
for 20 steps 030 1.203/, 236 

38.4 min 030 
for 15 steps 2.086 030 1. aO/, 215 

; 

0973 

. 270 

i 

6omin 
for 20 steps 

024 
029 

.291 
584 
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a 

sizes of the second run in Table 5 appear t o  be sat isfactory for the  

intermediate regions. 

In the  case of the second run of Table 5, the  convergence cr i ter ion,  

5 , for the  difference between successive i te ra t ions  was  set a t  10- 5 

ld/ut f o r  each velocity component and at lo4 Id  for each position 

component. Convergence w a s  obtained in 7 i terat ions,  each of which 

required very nearly -15 minute of computer time. 

minute was  required f o r  the in i t i a l i z ing  process including the genera- 

t i on  of the i n i t i a l  time h i s t o r y  as a patched conic. Table 6 shows the 

behavior of the  t o t a l  impulse value and the  convergence measure for the  

last three i terat ions.  

the two velocity and position components of t he  vector 6 . 
seen that the  convergence r a t e  i s  extremely good for the  last few 

i t e r a t ions  and that t h e  values obtained for the  impulse likewise show 

strong convergence t o  a final value. 

In addition a b u t  -17 

The convergence measures given are  the larger  of 

It can be 

The computer time used i s  one of the  output quant i t ies  at  each 

i t e r a t ion  and thus it is possible t o  indicate how the computer time i s  

used. 

cases are given i n  Table 7 along with some de ta i l s  which influence the  

time. 

the  tab le  i n  which s a e  moderate change in a boundary condition is made 

and f o r  which the previous time his tory i s  modified for the  new initial 

time history. As expected t h i s  new case i s  rapidly solved. 

procedure can be used for impulsive transfer studies and can be developed 

in to  a search program f o r  finding optimal impulsive t ransfers  i n  the 

three-body problem. 

Preliminary time studies showing several  runs of the two t e s t s  

There are included three runs based on the runs di rec t ly  above in 

Thus, the  
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F 

. 

:t eration 
Number 

TAHLE 6.  IMPULSE AMD CONVERGENCE MEASURE 

I 

Total Impulse 
( w u t  1 

-0276 4243 3894 

.0276 4094 2633 

.0276 4094 2084 

1 ld/ut = l.O%km/sec) 

Convergence 
Mea3 

V e l  . (ld/ut ) 
re 

POS. (Id. ) 
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cONCLus1m 

A double precision computer program which uses quasillnearization 

t o  find impulsive t ransfers  between given terminals i n  the  three-body 

pmblem has been shown t o  give ~ c c w a t e  solutforrs xith mmiderable sped. 

However, there are  still  three items t o  be completed before the program 

can be generally useful: (l), further t e s t s  w i l l  be needed t o  determine 

more precisely the controls and limits needed t o  produce resu l t s  sat isfying 

a given accuracy requirement; (2), the development of in i t ia l  time history 

sections f o r  Moon t o  Earth t ra jec tor ies  and f o r  lunar orbit  changes is 

needed, and (3), the management of the en t i re  initial time his tory section 

f o r  the  first case of a se r ies  should be controlled by means of an over- 

lay  process on the computer, thus, allowing an expansion i n  the number 

of points t h a t  can be stored f o r  the time history. 

c 

f 
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